Integrable symplectic trilinear interaction terms for matrix membranes
نویسندگان
چکیده
منابع مشابه
Integrable Symplectic Trilinear Interaction Terms for Matrix Membranes
Cubic interactions are considered in 3 and 7 space dimensions, respectively, for bosonic membranes in Poisson Bracket form. Their symmetries and vacuum configurations are discussed. Their associated first order equations are transformed to Nahm’s equations, and are hence seen to be integrable, for the 3-dimensional case, by virtue of the explicit Lax pair provided. The constructions introduced ...
متن کاملINTEGRABLE TRILINEAR PDE’s
In a recent publication we proposed an extension of Hirota's bilinear formalism to arbitrary multilinearities. The trilinear (and higher) operators were constructed from the requirement of gauge invariance for the nonlinear equation. Here we concentrate on the trilinear case, and use singularity analysis in order to single out equations that are likely to be integrable. New PDE's are thus obtai...
متن کاملIntegrable Systems in Symplectic Geometry
Quaternionic vector mKDV equations are derived from the Cartan structure equation in the symmetric space n =Sp(n+ 1)/Sp(1)×Sp(n). The derivation of the soliton hierarchy utilizes a moving parallel frame and a Cartan connection 1-form ω related to the Cartan geometry on n modelled on (spn+1, sp1 × spn). The integrability structure is shown to be geometrically encoded by a Poisson– Nijenhuis stru...
متن کاملSemitoric integrable systems on symplectic 4-manifolds
Let (M, ω) be a symplectic 4-manifold. A semitoric integrable system on (M, ω) is a pair of smooth functions J, H ∈ C∞(M, R) for which J generates a Hamiltonian S-action and the Poisson brackets {J, H} vanish. We shall introduce new global symplectic invariants for these systems; some of these invariants encode topological or geometric aspects, while others encode analytical information about t...
متن کاملSymplectic theory of completely integrable Hamiltonian systems
This paper explains the recent developments on the symplectic theory of Hamiltonian completely integrable systems on symplectic 4-manifolds, compact or not. One fundamental ingredient of these developments has been the understanding of singular affine structures. These developments make use of results obtained by many authors in the second half of the twentieth century, notably Arnold, Duisterm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters B
سال: 1997
ISSN: 0370-2693
DOI: 10.1016/s0370-2693(97)00551-0